Student Name :

Grade : IGCSE yr -1

Finding the Height of a Tower Using Trigonometry

Objective:

Students will construct a **DIY clinometer**, use it to measure angles of elevation, and apply trigonometry concepts (tangent ratios and scale factors) to determine the height of a chosen tall object (e.g., a tower, building, or tree).

Materials Required:

- Protractor
- Straw
- String
- Small weight (washer or paperclip)
- Measuring tape
- Calculator
- Notebook for recording data

Instructions for Students:

Step 1: Construct a DIY Clinometer

- 1. Tape a **protractor** onto a flat surface.
- Attach a straw along the straight edge of the protractor (this serves as the sighting tube).
- 3. Tie a **string** through the protractor's center hole and attach a **small weight** at the end of the string.
- 4. Your clinometer is now ready! The string will indicate the angle when you look through the straw.

Step 2: Choose an Object to Measure

- 1. Select a tall object such as a school building, tree, tower, or flagpole.
- Identify a measuring point at a known horizontal distance from the object (e.g., 10m, 15m, or 20m).

Step 3: Measure the Angle of Elevation

- 1. Stand at your chosen distance from the base of the object.
- 2. Use the **clinometer** to look at the top of the object.
- 3. Record the **angle of elevation** displayed on the protractor.

Step 4: Apply Trigonometry to Find the Height

1. Use the tangent formula:

 $tan(\theta)$ =height of object-eye level heightdistance from object\tan(\theta) =

\frac{\text{height of object} - \text{eye level height}}{\text{distance from object}}

• Solve for the height of the object:

Height=(tan angle)×(distance from object)+eye level height\text{Height} =

\text{(tan angle)} \times \text{(distance from object)} + \text{eye level height}

- 2. Measure your eye level height and add it to the calculated value.
- 3. Convert results if needed using scale factors to compare real-world measurements.

Step 5: Document Findings and Real-World Applications

• Draw a diagram showing your setup and calculations.

Criteria Clinometer	Excellent (5 pts) Well-built, functions accurately, and	Good (4 pts) Functions well	Satisfactory (3 pts) Basic construction,	Needs Improvement (2 pts) Poorly built,
Construction	includes all materials.	but may have minor flaws.	but accuracy issues present.	missing key materials.
Measurement & Data Collection	Precise angle readings, correct application of measurements.	Mostly accurate, slight measurement errors.	Some errors in angle reading and distances.	Major errors, incomplete data.
Mathematical Calculations	All calculations correct, clear use of trigonometry.	Minor calculation errors but correct method.	Some mistakes in trigonometry application.	Incorrect calculations, missing work.
Real-World Connection	Insightful applications to real- world contexts.	Good connection to real-life uses.	Basic mention of applications.	No real-world connection made.
Presentation & Documentation	Well-organized, clearly explained, and neatly presented.	Mostly clear, minor missing details.	Lacks organization, some steps missing.	Poorly documented, incomplete explanation.

Total Score: / 25

Extension Activity:

- **Compare different heights** by measuring multiple objects and analyzing how varying angles impact results.
- Collaborate with peers to validate accuracy.
- Apply scale factors to estimate distances in large maps and city planning.

Reflection Questions:

- How does changing the measuring distance affect accuracy?
- What are the real-world limitations of using a clinometer?
- In which professions would this method be useful?