Prove by induction that \(\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\cdots+\frac{1}{n(n+2)}=\frac{3}{4}-\frac{2n+3}{2(n+1)(n+2)}\).
\(\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\cdots+\frac{1}{n(n+2)}=\frac{3}{4}-\frac{2n+3}{2(n+1)(n+2)}\).
Base Case
For \(n=1\):
\(LHS=\frac{1}{1\cdot3}=\frac{1}{3}\)
\(RHS=\frac{3}{4}-\frac{2\cdot1+3}{2\cdot2\cdot3}=\frac{3}{4}-\frac{5}{12}=\frac{9-5}{12}=\frac{1}{3}\)
True for \(n=1\).
Inductive Step
Assume true for \(n=k\):
\(\sum_{i=1}^{k}\frac{1}{i(i+2)}=\frac{3}{4}-\frac{2k+3}{2(k+1)(k+2)}\).
For \(n=k+1\):
\(\sum_{i=1}^{k+1}\frac{1}{i(i+2)}=\left(\frac{3}{4}-\frac{2k+3}{2(k+1)(k+2)}\right)+\frac{1}{(k+1)(k+3)}\).
Simplify the variable part:
\(-\frac{2k+3}{2(k+1)(k+2)}+\frac{1}{(k+1)(k+3)}\)
\(\quad=\frac{-(2k+3)(k+3)+2(k+2)}{2(k+1)(k+2)(k+3)}\)
\(\quad=-\frac{(2k+5)(k+1)}{2(k+1)(k+2)(k+3)}\)
\(\quad=-\frac{2k+5}{2(k+2)(k+3)}\)
Therefore,
\(\sum_{i=1}^{k+1}\frac{1}{i(i+2)}=\frac{3}{4}-\frac{2k+5}{2(k+2)(k+3)}\),
which matches the required form with \(n=k+1\).
Hence, by induction,
\(\frac{1}{1\cdot3}+\frac{1}{2\cdot4}+\cdots+\frac{1}{n(n+2)}=\frac{3}{4}-\frac{2n+3}{2(n+1)(n+2)}\) for all \(n\in\mathbb{Z}^+\).