Exponents and Logarithm Question Bank -1
Points to Remember
• \(\log_a(xy) = \log_a x + \log_a y\)
• \(\log_a\left(\frac{x}{y}\right) = \log_a x – \log_a y\)
• \(\log_a(x^m) = m \log_a x\)
• \(\log_a 1 = 0\)
• \(\log_a a = 1\)
Natural Logarithm Laws (base \(e\))
• \(\ln(xy) = \ln x + \ln y\)
• \(\ln\left(\frac{x}{y}\right) = \ln x – \ln y\)
• \(\ln(x^m) = m \ln x\)
• \(\ln 1 = 0\)
• \(\ln e = 1\)
Change of Base Formula
\(\log_a x = \frac{\log_b x}{\log_b a}\) (Valid for any \(b > 0,\ b \ne 1\))
Example 1: Solve \((6^x)(3^{2x+1}) = 4^{x+2}\) using a calculator and leave your answer in the form \(x = \frac{\ln a}{\ln b}\), where \(a,b \in \mathbb{Q}\):
Example 2: Solve the equation for \(x\): \(9^x + 4(3^x) – 12 = 0\)
Example 3: Solve the equation: \(\log_{16} \sqrt[3]{100 – x^2} = \frac{1}{2}\)
Example 4: Find all values of \(x\) such that:\(3^{x^2 – 1} = (\sqrt{3})^{126}\)
Example 5: Solve the system of simultaneous equations:
\(x + 2y = 5\)
\(4^x = 8^y\)
Example 6: Solve the system of simultaneous equations for \(x, y > 0\):
\(\log_x y = 1\)
\(xy = 16\)
Example 7: Consider the function \(h(x) = \log_{10}(4x^2 – rx + r – 1)\), where \(x \in \mathbb{R}\).
Find the possible values of \(r\) such that the function is defined.
Example 8: Solve the simultaneous equations:
\(\log_2 (6x) = 1 + 2\log_2 y\)
\(1 + \log_6 x = \log_6 (15y – 25)\)
Example 9: Solve the equation: \(\log_4 (2 – x) = \log_{16} (13 – 4x)\)
Example 10: Solve the inequality: \((\ln x)^2 – (\ln 2)(\ln x) < 2(\ln 2)^2\)