Exponents and Logarithm : Lesson
Objective
• Understand and apply the laws of exponents
• Learn logarithmic laws and their connection to exponents
• Use natural logarithms and base-changing rules
Laws of Exponents
• \(a^m \cdot a^n = a^{m+n}\)
• \(a^0 = 1,\ a \ne 0\)
• \(\frac{a^m}{a^n} = a^{m-n}\)
• \(a^{-n} = \frac{1}{a^n}\) and \(\frac{1}{a^{-n}} = a^n\)
• \((a^m)^n = a^{mn}\)
• \(a^{1/n} = \sqrt[n]{a}\)
• \((ab)^n = a^n b^n\)
• \(a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m\)
• \(\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}\)
• If \(a^x = a^k\), then \(x = k\) (when bases are the same, we equate indices).
Definition of a Logarithm
If \(a^x = b\), where \(a \ne 1\) and \(a > 0,\ b > 0\), then \(x = \log_a b\)
Also: \(x = \log_a (a^x)\) and \(x = a^{\log_a x}\) (provided \(x > 0\))
The natural logarithm uses base \(e\) and is written as: \(\ln x \equiv \log_e x\)
Laws of Logarithms
• \(\log_a(xy) = \log_a x + \log_a y\)
• \(\log_a\left(\frac{x}{y}\right) = \log_a x – \log_a y\)
• \(\log_a(x^m) = m \log_a x\)
• \(\log_a 1 = 0\)
• \(\log_a a = 1\)
Natural Logarithm Laws (base \(e\))
• \(\ln(xy) = \ln x + \ln y\)
• \(\ln\left(\frac{x}{y}\right) = \ln x – \ln y\)
• \(\ln(x^m) = m \ln x\)
• \(\ln 1 = 0\)
• \(\ln e = 1\)
Change of Base Formula
\(\log_a x = \frac{\log_b x}{\log_b a}\) (Valid for any \(b > 0,\ b \ne 1\))
Example 1 : Simplify \(2\log_a 6 + \log_a 2 – \log_a 12\)
Example 2: Simplify: \(\log_3 x + 2\log_3 y – 3\log_3 t\)
Example 3: Simplify: \(3\log_a(x+2) – \log_a(3x^2 – 12) + \log_a(x – 2)\)
Example 4: Given: \(\log_2 y = 3\log_2 q + 5\log_2 x – \frac{1}{2} \log_2 p\). Expressing \(y\) in Terms of \(x\) Using Logarithmic Rules
Example 5: Solve the following logarithmic equations without using a calculator. Do not use the final line boxing method.
[a] \(\log_a x + 2\log_a 5 = \log_a 225\)
[b] \(\log_5(x+1) + \log_5(x-3) = 1\)
[c] \(\log_{16}(x+2) – \log_{16}(x-6) = \frac{1}{2}\)
[d] \(\log_7(2x+5) – \log_7(x-5) = \log_7\left(\frac{x}{2}\right)\)
[e] \(\log_{10}(x+2) – \log_{10}x = 2\log_{10}4\)
Example 6: Solve the equation: \(7 \cdot 3^{x+1} = 2 + \frac{3}{3^x}.\) Give your answer in the form \(x = a – \log_3 b\), where \(a, b \in \mathbb{Z}\).
Solution:
Example 7: Find the exact values of $x$ satisfying the equation. \((3^x)(4^{2x+1}) = 6^{x+2}\), giving your answer in the form \(x = \frac{\ln a}{\ln b}\), where \(a,b \in \mathbb{Z}\).