From Pascal’s triangle, the coefficients for power \(5\) are \(1,5,10,10,5,1\).
So,
\((2x+3y)^5 =Â ^5C_0(2x)^5(3y)^0 +Â ^5C_1(2x)^4(3y)^1 + ^5C_2(2x)^3(3y)^2+ ^5C_3(2x)^2(3y)^3 + ^5C_4(2x)(3y)^4 +Â ^5C_5(3y)^5\)
\(\quad = 32x^5 + 240x^4y + 720x^3y^2 + 1080x^2y^3 + 810xy^4 + 243y^5\)