Solving Trigonometric equations – ( Qn 1 – 10)
Question No: 1 [ Maximum Mark: 6 ] (Do not use GDC)
. Solve the equation \( \cos ^2 x+\cos x=\sin ^2 x\) where \( 0 \leqslant x \leqslant \pi\) . |
|||
Answer : \(x=\pi ; \quad x=\pi / 3 \) | |||
. . |
.
.
Question No: 2 [ Maximum Mark: 7 ] (Do not use GDC)
Solve the equation \( 3 \cos ^2 x-3=\sin ^{2} x-1\) where \( 0<x<2 \pi\) | |||
Answer : \(\begin{aligned} & x=\frac{\pi}{6} , \quad11 \frac{\pi}{6} ,\quad5 \frac{\pi}{6} ,\quad 7 \frac{\pi}{6} \end{aligned} \) |
|||
. . |
.
.
Question No: 3 [ Maximum Mark: 6 ] (Do not use GDC)
. Consider the quadratic equation \( x^2-\sqrt{8} \cos \theta \cdot x+3 \cos \theta=1 \text {. }\) where\( 0 \leq \theta \leq 2 \pi\) has equal roots , find the values of \( \theta\) . |
|||
Answer : \( \theta=\frac{\pi}{3}, \quad\frac{5 \pi}{3},\quad0,\quad2 \pi\) | |||
. . |
.
.
Question No: 4 [ Maximum Mark: 7 ] (Do not use GDC)
. Consider the equation \( 2 \sin ^2 x+\sin ^2 2 x=2\) , find the value of \( \cos x\) where \( 0 \leq x \leq \pi / 2\) ; . |
|||
Answer : \(x=\frac{\pi}{2}, \quad \frac{\pi}{4} \) | |||
. . |
.
.
Question No: 5 [ Maximum Mark: 4 ] (Do not use GDC)
. Consider the equation \( \sin x=\frac{3}{4}\) where \( 0 \leq x \leq \pi / 2\), find the values of \( \sin x\) . |
|||
Answer : \(\sin x=-\frac{1}{3} \text { or } \sin x=1 \text {. } \) | |||
. . |