Solution:
Divide both sides by \(x\):
\(\displaystyle \frac{dy}{dx} = \frac{y}{x} + e^{y/x}\)
Use the substitution \(y = ux \Rightarrow \frac{dy}{dx} = u + x\frac{du}{dx}\)
Now substitute into the equation:
\(u + x\frac{du}{dx} = u + e^u\)
Simplify:
\(x\frac{du}{dx} = e^u\)
Rewriting:
\(e^{-u} \frac{du}{dx} = \frac{1}{x}\)
Now integrate both sides:
\(\displaystyle \int e^{-u} \frac{du}{dx} , dx = \int \frac{1}{x} , dx\)
\(\Rightarrow -e^{-u} = \ln x + c\)
Substitute back \(u = \frac{y}{x}\):
\(-e^{-y/x} = \ln x + c\)
Use the initial condition \(y(1) = 2\):
\(-e^{-2} = \ln(1) + c \Rightarrow -e^{-2} = 0 + c \Rightarrow c = -e^{-2}\)
Therefore, the implicit solution is:Â \(\ln x = e^{-2} – e^{-y/x}\)